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Summary The probabilistic structure of a discrete-time (high-order) vector Markov process
may be studied via two approaches. In the first approach, the Markov process is specified
by the transition probability and the initial distribution. An alternative approach is via a
stochastic difference equation. We have proved that these two approaches are equivalent
under very mild conditions.
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1. INTRODUCTION

Consider a discrete-time Markov process. One can study its structure by reference to the
conditional probability, i.e. the transition probability, in addition to the initial distribution.
This approach will be referred to as the direct approach. An alternative approach is via a
stochastic difference equation. In the linear Gaussian case, the two approaches are clearly
equivalent. The state space approach to nonlinear time series typically adopts the tran-
sition probability approach while the nonlinear autoregressive approach is clearly within
the nonlinear stochastic difference framework. Now, for a real-valued Markov chain and in
the order one case, the two approaches can be shown to be equivalent under very general
conditions; see Rosenblatt (1971, Lemma 2 on p. 169) and Tong (1990, Lemma 3.1 on p.
97). Whether this equivalence can be generalised to the case of higher-order vector-valued

Markov processes is an open problem as far as we are aware. This open problem deserves



careful attention as the equivalence of the two approaches, if true, has the following useful
consequences. First, it implies that whether we should use one approach in preference to
the other becomes a matter of either taste or convenience. Second, it is then guaranteed
that one can convert freely between the two approaches. While the direct approach fa-
cilitates likelihood calculations, the stochastic difference equation approach yields a direct
description of the dynamics of the process, which is of relevance for forecasting purposes.
Moreover, it provides a recipe of recovering the noise terms under certain conditions, which
are useful for (not necessarily likelihood-based) model estimation and diagnostics. Hence,
the possibility of converting between the two approaches is of some practical value.

The purpose of this note is to address this open problem on the equivalence of the direct
approach and the stochastic difference equation approach. We show in §2 that under very

general conditions, the two approaches are indeed equivalent.

2. MAIN RESULT

We recall the well-known device of writing a pth-order Markov chains, say, {Y,,} as a first-
order vector-valued Markov chains via the stacking operation: X, = (Y, Y, 1, -+, Y, _ 1)’
where X, is k-dimensional with k equal to p times the dimension of Y,,. Henceforth, it
suffices to consider first-order k-dimensional Markov chains.

We first illustrate some of the basic ideas in the case of £ = 2, i.e., two dimensional
Markov chains. Let {X,, = (X1, Xn,2)'} be a stationary Markov chain with the o-algebra
generated by {X1, -+, Xy} denoted as B,. Let €, = (€n,1,€n,2)" be the white noise driving
the process. One can consider the case of generating the process at epoch n + 1 componen-
twise in the order of X, 411, Xnt1,2. Hence, we may think of €,41,1 as the noise (input)
needed to obtain X, given all past X’s. Then, €,41,2 is the independent input needed
to obtain X, 11,2 given X;,11,; and all past X’s. Thus, it seems not restrictive to assume
that €, consists of independent components that are independent of past X’s. In other
words, we shall consider the case that the o-algebra B, 1 generated by all observations up
to and including epoch n 41 equals By, X Cpq1,1 X Cpq1,2 where C), ; denotes the o-algebra
generated by the jth component of the noise at epoch n.

Now, let us introduce some notations for the general case of k-dimensional Markov

chains. Denote by By ; the o-algebra generated by all X’s up to and including epoch n,



and Xp41,4,0 <14 < j, that is, the first j-components of X,,;,. In particular, B, 1,0 = Bj.
It is natural to impose the requirement that By41 ; = By X Cpy1,1 X Cpqp1,2 X - -+ X Cpgy 5.
This is an explicit requirement on how the process is generated, namely, the jth component
of X, 11 is built up by the past X’s and the first j components of the noise term €,,;. If this
requirement is satisfied, then for fixed j, the one-dimensional conditional distributions of
Xnt1,j+1 given Xy, = 2, Xpq1,s = Tng1,4,4 < J are equivalent functions for all z, Zn41,4,% <
j. [Following Rosenblatt (1971), two 1-dimensional distribution functions, say, F and G
are said to be equivalent if and only if the discontinuity points of F' can be mapped to
those of G in a one-to-one manner with the jump size preserved.] It is well known that
a distribution function admits at most countably many points of discontinuity. For any
distribution function, say, H, the set of all discontinuity points of H will be denoted as
D(H). Hence, F and G are equivalent if and only if there exists a one-to-one map ¢ :
z € D(F) —» ¢(z) € D(G) preserving the jump sizes, that is, for all z € D(F), F(z) —
F(z—) = G(¢(z)) — G(¢(x)—) where, for example, F(xz—) = limy4, F(y). In particular,
continuous distribution functions are, by definition, equivalent. Conversely, following the
same kind of construction as in Rosenblatt (1971, p.169), it will be shown below that if
the equivalence requirement on the conditional distribution functions holds, there exist
€n = (€n,1,€n,2, - »€nk) and Gj,5 = 1,---,k such that Xp41 41 = G(Xn, Xng1,i,8 <
Js€nt1,j41). In other words, we have X 11 = G(X,,€,41) a.e., a stochastic difference
equation representation.

We can now summarize the preceding heuristic discussion in the main result below by
first posing the following question
Q: Does there exist €, = (€p,1, -, €n,)" of independent components such that for all n and
all j, €p11,j41 is independent of By, 41 ; and yet By y1 ;41 equals the o-algebra generated by

Brt1,j and €nt,j417

LEMMA 2.1. Let {X,} be a k-dimensional stationary Markov chain with conditional
distributions Fj(xj41|2, Znt1,i,1 < J) = P(Xpt1,+1 < 41| Xn = 2, Xnt1,i = Tny1,4,0 <
J). The answer to question Q is affirmative if and only if for each j, Fj(xj41|T, Tny1,i,0 <
J), as functions of xjy1, are equivalent for almost all T, %n41,i,1 < j, with respect to the

stationary probability measure of the process {X,}.

Before we present the proof of this lemma, three remarks are in order. First, in the vector



case, the stochastic difference equation representation is ordinarily not unique. In fact, the
non-uniqueness of the difference equation representation is related to the identifiability of
the model. This problem is very challenging and well documented in the case of linear
Auto-Regressive Moving-Average (ARMA) models for vector time series; see Tuan (1978)
and Hannan (1979). Second, we have assumed a particular order of the components of X,,.
Already in the linear ARMA case, different order of the components may yield different
stochastic difference equation representations, some of which may be more tractable than
some others in terms of statistical inference. Third, jumps may occur naturally in the
conditional distribution functions. For example, consider an AR(2) model: Y,, = a;Y,, 1 +
Y, _o+e, where ey, areiid. Let X,, = (Xp1 = Y1, X2 =Y,,)". Clearly, the conditional
probability distribution of X, 11 1 given X,, jumps at the point X, » from 0 to 1.

Proof: First, we consider the proof of the necessity of the equivalence of Fj’s for each
J. Let C, ; denote the o-algebra generated by €, ;. For fixed j, the equality By ; =
Bpt1,j-1 X Cpq1,; implies that conditional on Xy, X, 114,17 < j, the o-algebra generated
by Xn41,; equals Cpq1,; and hence the Fj’s are equivalent functions.

Conversely, suppose that for all j, Fj’s are equivalent functions. For simplicity,
first assume that all F’s are continuous functions with no jumps. Then, let Upy1; =
F;(Xn41,j1Xn, Xnt1,i,4 < j) which are uniformly distributed over the unit interval [0, 1].
Hence, {Up, = (Un,1,-+,Unk)'} is a sequence of iid random variables, each component of
Up, being uniformly distributed over [0, 1]. Therefore, X41,; = Fj_l(Un,j|Xn, Xnt1,i,8 < J)
almost surely. Here, the inverse of a distribution function, say, F is defined as F~1(z) =
inf{y : F(y) > x}. This demonstrates that there exists a G such that X,+1 = G(Xp, Un+1),
a stochastic difference equation representation.

If the functions F}; have jumps, we adapt below the arguments on p.169 of Rosenblatt
to show that the above difference equation representation still holds, but the components
of U, need not be uniformly distributed over [0,1]. For fixed j, let the set of discontinuity
points of Fj(-|z,%p41,;,0 < @ < j) be D = {dy,ds,ds,---} where the d’s are assumed to
be labelled so that their corresponding jump sizes are non-increasing: p; > p2 > p3 >

--. (Note that the only accumulation point of the jump sizes must be zero, as the total
probability mass equals 1; hence the jump sizes attain their maximum value.) In other
words, for all k, F;(dg|z,Znt1,:,0 <@ < j) — Fj(dp — |2, Zn41,:,0 < i < j) = pi, with the

d’s labelled sequentially so that the corresponding p’s are non-increasing. Moreover, the



set of p’s depends on j but is independent of x,2,41,;,0 < ¢ < j by the equivalence of
the Fj’s. On the other hand, the set of discontinuity points does depend on both j and
the conditioning values, z,Zp41,;,0 < ¢ < j. We have suppressed the dependence of the
p’s on j for conciseness; similarly we adopt a simpler notation for the d’s. Now, define
€nt+1,j = ¢ when X,41; = d; given X,, = 2, X415 = Tnt1,i,0 < © < j; otherwise define
€nt1,; = F 7 (Xny1,|1Xn = 2, Xnt1,i = Tni1,i,0 < i < j). It is readily checked that €, ; is
a probabilistic mixture such that it equals ¢ with probability p; and is uniformly distributed
on [0,1] with probability 1 — }°, p;. Clearly, there exist measurable functions G; such
that X, 41,5 = Gj(€nt1,5, Xn, Xnt1,i,0 < @ < j). This completes the proof that there exists

G such that X,,11 = G(X,, €n41), a stochastic difference equation representation.

3. CONCLUSION

In the case of vector ARMA modeling, the non-uniqueness of the stochastic difference
equation representation has given rise to much research on convenient parameterization of
vector ARMA models; see, e.g., Akaike (1976), Tuan (1978), Hannan (1979), Hannan and
Deistler (1988) and Tiao and Tsay (1989). This non-uniqueness problem is much more
challenging in the case of nonlinear time series, partly because the functional form of the
nonlinear model is often unknown. Innovative research on this challenging problem is clearly

needed for advancing nonlinear multiple time series modeling.
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